首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34590篇
  免费   16135篇
  国内免费   5篇
  2022年   100篇
  2021年   486篇
  2020年   2244篇
  2019年   3777篇
  2018年   3901篇
  2017年   4172篇
  2016年   4226篇
  2015年   4239篇
  2014年   3939篇
  2013年   4445篇
  2012年   2269篇
  2011年   1966篇
  2010年   3328篇
  2009年   2085篇
  2008年   1080篇
  2007年   722篇
  2006年   658篇
  2005年   693篇
  2004年   637篇
  2003年   662篇
  2002年   656篇
  2001年   344篇
  2000年   270篇
  1999年   241篇
  1998年   145篇
  1997年   113篇
  1996年   97篇
  1995年   120篇
  1994年   110篇
  1993年   99篇
  1992年   96篇
  1991年   90篇
  1990年   80篇
  1989年   79篇
  1988年   81篇
  1987年   79篇
  1986年   68篇
  1985年   96篇
  1984年   91篇
  1983年   83篇
  1982年   111篇
  1981年   103篇
  1980年   98篇
  1979年   64篇
  1978年   84篇
  1977年   66篇
  1976年   82篇
  1975年   56篇
  1974年   65篇
  1968年   51篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
21.
Aim It is a central issue in ecology and biogeography to understand what governs community assembly and the maintenance of biodiversity in tropical rain forest ecosystems. A key question is the relative importance of environmental species sorting (niche assembly) and dispersal limitation (dispersal assembly), which we investigate using a large dataset from diverse palm communities. Location Lowland rain forest, western Amazon River Basin, Peru. Methods We inventoried palm communities, registering all palm individuals and recording environmental conditions in 149 transects of 5 m × 500 m. We used ordination, Mantel tests and indicator species analysis (ISA) to assess compositional patterns, species responses to geographical location and environmental factors. Mantel tests were used to assess the relative importance of geographical distance (as a proxy for dispersal limitation) and environmental differences as possible drivers of dissimilarity in palm species composition. We repeated the Mantel tests for subsets of species that differ in traits of likely importance for habitat specialization and dispersal (height and range size). Results We found a strong relationship between compositional dissimilarity and environmental distance and a weaker but also significant relationship between compositional dissimilarity and geographical distance. Consistent with expectations, relationships with environmental and geographical distance were stronger for understorey species than for canopy species. Geographical distance had a higher correlation with compositional dissimilarity for small‐ranged species compared with large‐ranged species, whereas the opposite was true for environmental distance. The main environmental correlates were inundation and soil nutrient levels. Main conclusions The assembly of palm communities in the western Amazon appears to be driven primarily by species sorting according to hydrology and soil, but with dispersal limitation also playing an important role. The importance of environmental characteristics and geographical distance varies depending on plant height and geographical range size in agreement with functional predictions, increasing our confidence in the inferred assembly mechanisms.  相似文献   
22.
Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.  相似文献   
23.
FTA® cards were used for long‐term storage of avian blood samples. Blood DNA was extracted by a simple method and used in PCR for sex identification of adult and nestling Great Grey Shrikes Lanius excubitor.  相似文献   
24.
Habitat loss is one of the main threats to wildlife. Therefore, knowledge of habitat use and preference is essential for the design of conservation strategies and identification of priority sites for the protection of endangered species. The yellow‐tailed woolly monkey (Lagothrix flavicauda Humboldt, 1812), categorized as Critically Endangered on the IUCN Red List, is endemic to montane forests in northern Peru where its habitat is greatly threatened. We assessed how habitat use and preference in L. flavicauda are linked to forest structure and composition. The study took place near La Esperanza, in the Amazonas region, Peru. Our objective was to identify characteristics of habitat most utilized by L. flavicauda to provide information that will be useful for the selection of priority sites for conservation measures. Using presence records collected from May 2013 to February 2014 for one group of L. flavicauda, we classified the study site into three different use zones: low‐use, medium‐use, and high‐use. We assessed forest structure and composition for all use zones using 0.1 ha Gentry vegetation transects. Results show high levels of variation in plant species composition across the three use zones. Plants used as food resources had considerably greater density, dominance, and ecological importance in high‐use zones. High‐use zones presented similar structure to medium‐ and low‐use zones; thus it remains difficult to assess the influence of forest structure on habitat preference. We recommend focusing conservation efforts on areas with a similar floristic composition to the high‐use zones recorded in this study and suggest utilizing key alimentation species for reforestation efforts.  相似文献   
25.
26.
27.
The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.  相似文献   
28.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
29.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号